Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 210: 108608, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38615445

RESUMEN

Tonoplast Intrinsic Proteins (TIPs) are vital in transporting water and solutes across vacuolar membrane. The role of TIPs in the arsenic stress response is largely undefined. Rice shows sensitivity to the arsenite [As[III]] stress and its accumulation at high concentrations in grains poses severe health hazards. In this study, functional characterization of OsTIP1;2 from Oryza sativa indica cultivar Pusa Basmati-1 (PB-1) was done under the As[III] stress. Overexpression of OsTIP1;2 in PB-1 rice conferred tolerance to As[III] treatment measured in terms of enhanced shoot growth, biomass, and shoot/root ratio of overexpression (OE) lines compared to the wild-type (WT) plants. Moreover, seed priming with the IRW100 yeast cells (deficient in vacuolar membrane As[III] transporter YCF1) expressing OsTIP1;2 further increased As[III] stress tolerance of both WT and OE plants. The dithizone assay showed that WT plants accumulated high arsenic in shoots, while OE lines accumulated more arsenic in roots than shoots thereby limiting the translocation of arsenic to shoot. The activity of enzymatic and non-enzymatic antioxidants also increased in the OE lines on exposure to As[III]. The tissue-specific localization showed OsTIP1;2 promoter activity in root and root hairs, indicating its possible root-specific function. After As[III] treatment in hydroponic medium, the arsenic translocation factor (TF) for WT was around 0.8, while that of OE lines was around 0.2. Moreover, the arsenic content in the grains of OE lines reduced significantly compared to WT plants.


Asunto(s)
Arsénico , Arsenitos , Oryza , Proteínas de Plantas , Raíces de Plantas , Brotes de la Planta , Plantas Modificadas Genéticamente , Oryza/genética , Oryza/metabolismo , Oryza/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Arsénico/metabolismo , Brotes de la Planta/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Transporte Biológico/efectos de los fármacos , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética
2.
J Hazard Mater ; 465: 133078, 2024 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-38056278

RESUMEN

The International Agency for Research on Cancer categorizes arsenic (As) as a group I carcinogen. Arsenic exposure significantly reduces growth, development, metabolism, and crop yield. Tonoplast intrinsic proteins (TIPs) belong to the major intrinsic protein (MIP) superfamily and transport various substrates, including metals/metalloids. Our study aimed to characterize rice OsTIP1;2 in As[III] stress response. The gene expression analysis showed that the OsTIP1;2 expression was enhanced in roots on exposure to As[III] treatment. The heterologous expression of OsTIP1;2 in S. cerevisiae mutant lacking YCF1 (ycf1∆) complemented the As[III] transport function of the YCF1 transporter but not for boron (B) and arsenate As[V], indicating its substrate selective nature. The ycf1∆ mutant expressing OsTIP1;2 accumulated more As than the wild type (W303-1A) and ycf1∆ mutant strain carrying the pYES2.1 vector. OsTIP1;2 activity was partially inhibited in the presence of the aquaporin (AQP) inhibitors. The subcellular localization studies confirmed that OsTIP1;2 is localized to the tonoplast. The transient overexpression of OsTIP1;2 in Nicotiana benthamiana leaves resulted in increased activities of enzymatic and non-enzymatic antioxidants, suggesting a potential role in mitigating oxidative stress induced by As[III]. The transgenic N. tabacum overexpressing OsTIP1;2 displayed an As[III]-tolerant phenotype, with increased fresh weight and root length than the wild-type (WT) and empty vector (EV line). The As translocation factor (TF) for WT and EV was around 0.8, while that of OE lines was around 0.4. Moreover, the OE line bioconcentration factor (BCF) was more than 1. Notably, the reduced TF and increased BCF in the OE line imply the potential of OsTIP1;2 for phytostabilization.


Asunto(s)
Arsénico , Arsenitos , Oryza , Arsénico/metabolismo , Oryza/metabolismo , Saccharomyces cerevisiae/metabolismo , Arsenitos/metabolismo , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo
3.
Plant Cell Rep ; 40(11): 2097-2109, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34110446

RESUMEN

With No Lysine kinases (WNKs) are a distinct family of Serine/Threonine protein kinase with unique arrangement of catalytic residues in kinase domain. In WNK, an essential catalytic lysine requisite for attaching ATP and phosphorylation reaction is located in subdomain I, instead of subdomain II, which is essentially a typical feature of other Ser/Thr kinases. WNKs are identified in diverse organisms including multicellular and unicellular organisms. Mammalian WNKs are well characterized at structural and functional level, while plant WNKs are not explored much except few recent studies. Plant WNKs role in various physiological processes viz. ion maintenance, osmotic stress, pH homeostasis, circadian rhythms, regulation of flowering time, proliferation and organ development, and abiotic stresses are known, but the mechanisms involved are unclear. Plant WNKs are known to be involved in enhanced drought and salt stress response via ABA-signaling pathway, but the complete signaling cascade is yet to be elucidated. The current review will discuss the interplay between WNKs and growth regulators and their cross talks in plant growth and development. We have also highlighted the link between the stress phytohormones and WNK members in regulating abiotic stress responses in plants. The present review will provide an overall known mechanism on the involvement of WNKs in plant growth and development and abiotic stress response and highlight its role/applications in the development of stress-tolerant plants.


Asunto(s)
Lisina/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Fenómenos Fisiológicos de las Plantas , Proteínas de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Ritmo Circadiano/fisiología , Desarrollo de la Planta , Proteínas de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...